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Monkeypox virus (MPXV), which causes Monkeypox (Mpox), has recently been 
found outside its usual geographic distribution and has spread to 114 different 
nations. The World Health Organization (WHO) designated the epidemic a Public 
Health Emergency of International Concern (PHEIC). Humans are at risk from 
MPXV’s spread, which has raised concerns, particularly in the wake of the SARS-
CoV-2 epidemic. The risk of virus transmission may rise due to the persistence of 
MPXV on surfaces or in wastewater. The risk of infection may also increase due to 
insufficient wastewater treatment allowing the virus to survive in the environment. 
To manage the infection cycle, it is essential to investigate the viral shedding from 
various lesions, the persistence of MPXV on multiple surfaces, and the length of 
surface contamination. Environmental contamination may contribute to virus 
persistence and future infection transmission. The best possible infection control 
and disinfection techniques depend on this knowledge. It is thought to spread 
mainly through intimate contact. However, the idea of virus transmission by 
environmental contamination creates great concern and discussion. There are 
more cases of environmental surfaces and wastewater contamination. We will 
talk about wastewater contamination, methods of disinfection, and the present 
wastewater treatment in this review as well as the persistence of MPXV on various 
environmental surfaces.
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1 Introduction

1.1 Aetiology

The zoonotic viral disease monkeypox (Mpox), endemic in central 
and western Africa, has recently spread to numerous nations in both 
endemic and nonendemic regions. Over 89,500 cases had been 
reported up to August 2023 across 114 countries, 107 (~94%) of which 
have not historically reported mpox. Its incubation period varies from 
a few days to 3 weeks. Unlike the smallpox virus, the monkeypox virus 
(MPXV) has a wide range of animal reservoirs that spread it to 
humans sporadically (Ježek et al., 1987; Di Giulio and Eckburg, 2004; 
CDC, 2022; Kaler et al., 2022; Moore and Zahra, 2022). Its prodromal 
symptoms, which initially resemble the flu, are followed by 
lymphadenopathy and a rash on the face before spreading throughout 
the body.

However, the clinical picture in the current outbreak is abnormal; 
according to research done on 23 patients, 95% had a rash, almost 
two-thirds had 10 or more lesions, 73% had anogenital lesions, and 
41% had mucosal lesions (Ladnyj et al., 1972; Learned et al., 2005; 
Beer and Rao, 2019; Thornhill et al., 2022a).

Additionally, roughly 10% of patients had a single genital ulcer, 
and others had many lesions at once (Thornhill et al., 2022a). The 
majority of the time, it is a self-limiting disease that goes away 
3–4 weeks after the first signs and symptoms arise, with crust 
formation and desquamation occurring over the next 7–14 days. After 
the lesion has healed, there may be light scarring that later darkens.

1.2 Epidemiology

Although Mpox outbreaks have grown since their initial detection, 
they were primarily confined to Africa. In 2003, the United States of 
America (USA) reported the first cases outside of Africa, with 53 with 
mpox confirmed infections. United Kingdom (UK) health officials 
confirmed the Mpox case of a tourist who returned from Nigeria in 
May 2022. Since then, recorded cases have grown in other nations, 
including those without a history of travel to endemic regions, but 
through community transmission, with only a few cases involving 
women and children. In contrast, most cases involved having sex with 
men (MSM) (CDC, 2003a; Isidro et al., 2022; Kipkorir et al., 2022; 
Kozlov, 2022; Mahase, 2022; Americo et al., 2023).

1.3 MPXV clades

Central African and western African are the two primary clades 
of MPXV, and they are now referred to as clades I and II, respectively. 
With a case fatality rate of up to 10%, clade I is more severe than clade 
II, which is less severe with a case fatality rate of less than 1%. Clade 
II would be  divided further into clades IIa and IIb. The MPXV 
responsible for the current outbreak is related to clade IIb, which is 
related to clade IIa, responsible for the outbreak in Nigeria in 2017.

That is determined through phylogenetic analysis. It is uncertain 
what genetic variations are responsible for the greater incidence of 
clade IIb transmission in humans (Gammon et al., 2010; Isidro et al., 
2022; Kipkorir et al., 2022; Kozlov, 2022; Mahase, 2022; Americo et al., 
2023). DNA viruses like MPXV typically do not show many mutations. 

However, in the current outbreak, isolates from 2022 were discovered 
to have 10 alterations in the MPXV replication complex (RC) and 
other viral proteins. The potential effects of each mutation are not now 
fully understood. More study is required to understand further how 
these recently generated mutations function (Arita et al., 1985; Ježek 
et al., 1988a; CDC, 2003a; Hutson et al., 2009; Gammon et al., 2010; 
Isidro et al., 2022; Kannan et al., 2022; Kipkorir et al., 2022; Kozlov, 
2022; Mahase, 2022; Americo et al., 2023).

1.4 MPXV transmission

Animal interaction was the leading cause of human infection. 
However, it could be  challenging to pinpoint the precise animal 
interaction that caused a case in areas where different species are 
encountered. Rarely in secondary cases, but occasionally in primary 
human patients, does Human-to-human transfer happen. The 
evidence suggests that family members or those who care for a Mpox 
patients are at a higher risk for contracting an infection, even though 
the efficiency of Mpox human-to-human transmission appears to 
be less than that of smallpox. It did occur up to 11.7% of household 
contacts of patients who were not protected against smallpox (Arita 
et al., 1985; Ježek et al., 1988a; Goldmann, 2000; Hutson et al., 2009; 
Gammon et al., 2010; Spicknall et al., 2010; Kannan et al., 2022; León-
Figueroa et al., 2022; Salvato et al., 2022; Hernaez et al., 2023; Karagoz 
et al., 2023; CDC, 2023a).

The environment, the virus’s ability to infect the host, viral 
shedding, the host’s susceptibility, and behavior all impact the virus’s 
spread. Additional essential environmental elements that affect 
transmission include host density and mobility patterns. Lesion 
exudate, crust material, respiratory droplets, and viral shedding in 
faeces are all possible routes for human transmission (Goldmann, 
2000; León-Figueroa et al., 2022; Salvato et al., 2022; Atkinson et al., 
2022a; Hernaez et al., 2023; Karagoz et al., 2023; Mellon et al., 2023; 
Sharkey et al., 2023; CDC, 2023a).

It is most likely spread through intimate contact with an infected 
person and possibly transmitted by big droplets that settle after about 
one meter; however, the evidence of respiratory transmission is still 
questionable (Goldmann, 2000; Salvato et al., 2022; Atkinson et al., 
2022a; Hernaez et al., 2023). Mpox is spread by close, personal contact, 
mainly through sexual contact in the current outbreak. Indirect 
contact with contaminated surfaces and objects is another route that 
could contribute to viral transmission. A recent investigation in the 
UK revealed the presence of MPXV DNA on several surfaces from 
locations visited by a tourist returning from Nigeria with a confirmed 
case of Mpox (Atkinson et  al., 2022a). According to a different 
investigation, fomite transmission was regarded as a plausible primary 
infection source in two cases. These studies support environmental 
assessments since polluted fomite can spread infectious diseases. 
Fomites might contract the virus by coming into intimate contact with 
human fluids or secretions, touching contaminated hands, or 
contacting respiratory droplets that land on various surfaces (Lu et al., 
2022; Palich et al., 2022; Atkinson et al., 2022a; Girón-Guzmán et al., 
2023; Hernaez et al., 2023; La Rosa et al., 2023; Mellon et al., 2023; 
Sharkey et al., 2023; CDC, 2023b). Despite patients wearing surgical 
masks, a different investigation found viral DNA in the air in the 
outpatient consultation room during visits from Mpox patients. 
Therefore, the viral particles found may have been transmitted 
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through the air from the skin, sores on the genitalia or oropharynx, or 
respiratory secretions. Despite this, neither healthcare professionals 
nor consulting Mpox-negative patients reported any MPXV symptoms 
during the trial period or in the 21 days that followed (Mellon et al., 
2023). Infections of the Mpox virus are transmitted and closely 
watched due to wastewater (Girón-Guzmán et al., 2023; La Rosa et al., 
2023; Sharkey et al., 2023). Since human fluids that are contaminated 
with the virus may be present in wastewater, it is possible that MPXV 
can spread there. Therefore, public health officials’ wastewater analysis 
can provide a clear picture of the scope of the Mpox outbreak and 
potentially aid in its containment (Ježek et al., 1988b; Nakoune et al., 
2017; Adler et al., 2022; Ferré et al., 2022; Lu et al., 2022; Ogoina and 
Yinka-Ogunleye, 2022; Palich et  al., 2022; Riopelle et  al., 2022; 
Thornhill et al., 2022b; Owhonda et al., 2023; Wieder-Feinsod et al., 
2023; CDC, 2023b,c).

The possibility of cross-border diffusion and subsequent 
transmission of Mpox has increased due to the ambiguity surrounding 
the outbreak’s containment and the risk of social transmission.

Unlike earlier cases, most current cases do not have confirmed 
travel connections to endemic regions, indicating a crucial role in 
community and environmental transmission. That review covers the 
most recent research on the role of the environment in the 
transmission of Mpox, the importance of wastewater surveillance and 
monitoring, and the potential transmission of illnesses pathways 
(Ježek et al., 1988b; Adler et al., 2022; Lu et al., 2022; Palich et al., 2022; 
Thornhill et al., 2022b; Girón-Guzmán et al., 2023; La Rosa et al., 
2023; Sharkey et al., 2023; Wieder-Feinsod et al., 2023; CDC, 2023b,c).

2 Viral shedding

Identifying viral shedding to improve treatment and stop further 
transmission is essential. Because infected skin lesions have the largest 
viral loads, the highest favorable rates, and the least invasive, 
quantitative real-time polymerase chain reaction (qPCR) techniques, 
have been suggested for detecting MPXV in these infected skin lesion 
swabs. These assessments are most effective when combined with 
clinical and epidemiological data, such as vaccination history (Ježek 
et al., 1988b; Adler et al., 2022; Lu et al., 2022; Ogoina and Yinka-
Ogunleye, 2022; Palich et al., 2022; Riopelle et al., 2022; Thornhill 
et  al., 2022b; Girón-Guzmán et  al., 2023; La Rosa et  al., 2023; 
Owhonda et al., 2023; Wieder-Feinsod et al., 2023; CDC, 2023b,c).

MPXV was found in various swabs, including anal, contaminated 
objects, skin, saliva, oropharynx, conjunctiva, vaginal fluids, breast 
milk, semen, blood, urine, and faeces. Given that the viral load in 
diverse clinical samples coincided with the quantity of replication-
competent MPXV found, a higher viral concentration, as assessed by 
qPCR, can forecast a larger potential for infectivity. After the sickness 
first appears, the virus might shed for up to 3 weeks. However, it 
persisted longer in samples with cycle threshold (Ct) values higher 
than 35, lasting up to 8 weeks for semen and up to 10 weeks for saliva 
samples, and 6 to 10 weeks for respiratory samples (Ježek et al., 1986, 
1988b; Nakoune et al., 2017; Ogoina et al., 2019; Vaughan et al., 2020; 
Adler et al., 2022; Ferré et al., 2022; Ogoina and Yinka-Ogunleye, 
2022; Riopelle et al., 2022; Zachary and Shenoy, 2022; Thornhill et al., 
2022b; Owhonda et al., 2023; Wieder-Feinsod et al., 2023).

Numerous diagnostic procedures, such as qPCR, 
immunohistochemistry, serology, and electron microscopy, could 

be used to determine the presence of Mpox. The best method for 
experimental diagnosis is known to be qPCR. However, in an outbreak 
like this, it may not always be  practical because every diagnostic 
process has to adhere to strict diagnostic and biosafety performance 
standards regarding sampling technique, storage, and other biosafety 
requirements, which delays the diagnostic process and causes 
additional costs. Furthermore, it only has a limited impact in rural 
places with few resources. Given the rising prevalence of Mpox, quick 
screening techniques, like those found in SARS-CoV-2 kits, should 
be created to be employed as a large-scale diagnostic approach for 
screening and detecting vulnerable people (Ježek et al., 1986; CDC, 
2003b; Nakoune et al., 2017; Ogoina et al., 2019; Vaughan et al., 2020; 
Gould et al., 2022; Morgan et al., 2022; Nörz et al., 2022; Ogoina and 
Ogunsola, 2022; Pfeiffer et al., 2022; Zachary and Shenoy, 2022).

CDC stated that a patient is no longer contagious when all scabs 
have gone off, contradicting the traditional view that Mpox patients 
are infectious until all lesions have crusted. Recent research has shown 
that MPXV DNA can still be found in the upper respiratory system 
days after lesions have healed. It is uncertain whether patients with 
crusted skin lesions and positive upper respiratory tract swabs are 
contagious. Further study is needed in this area because the healing of 
skin lesions served as the leading indicator of the Mpox patients’ 
infectiousness. These findings might prompt additional adjustments 
to the rules for discharge and quarantine days, with immediate 
implications for using healthcare resources (CDC, 2003b; Gould et al., 
2022; Morgan et al., 2022; Nörz et al., 2022; Ogoina and Ogunsola, 
2022; Pfeiffer et al., 2022; Atkinson et al., 2022a,b).

Misdiagnosis of Mpox as another sexually transmitted disease 
(STD) can delay isolation and result in inadequate treatment, 
prolonging and worsening the current epidemic. According to several 
studies, misdiagnosis occurred due to the clinical presentation, which 
was unusual compared to African outbreaks. A case report showed an 
atypical distribution of rash that had not happened on the face, in 
contrast to the recognized national case definition. Only 11% of 
patients in the UK experienced the rash, the primary diagnostic sign 
of Mpox, and 20% did not share a prodrome before the rash. Clinical 
symptoms that are distinct from those that have previously been 
documented may be the result of an atypical method of transmission. 
A recent study found that during the 2017–2018 Nigerian outbreak, 
risky sexual conduct was highly prevalent and that 81.2% of Mpox-
infected patients had genital ulcers. Due to this abnormal presentation 
of Mpox, healthcare professionals may have incorrectly diagnosed 
Mpox patients with ordinary STDs without thoroughly considering 
the range of other possible differential diagnoses. Some of the 
outbreak’s less frequently reported cases may also be due to the less 
severe clinical symptoms associated with clade 2 MPXV. Patients who 
feel good might also not seek medical attention (Patrono et al., 2020; 
Jonge et al., 2022; Nörz et al., 2022; Peiró-Mestres et al., 2022; Pfeiffer 
et al., 2022; Sharkey et al., 2022; Atkinson et al., 2022a,b; CDC, 2023d).

Semen samples from asymptomatic people in this outbreak 
contained MPXV DNA, suggesting hat asymptomatic transmission 
may have contributed to the virus’s spread. In a recent investigation, 
rectal swabs from 200 asymptomatic MSM cases revealed positive 
Mpox qPCR results. To establish the presence of a contagious virus, 
isolating it from tested samples is necessary because qPCR results 
cannot precisely predict the chance of infection. The existence of 
asymptomatic Mpox cases raises concerns that the true number of 
patients may be underestimated and that the virus may be spread to 
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close contacts even when there are no symptoms. Collecting more 
accurate epidemiologic data on the prevalence, clinical signs, 
transmission mechanism, and asymptomatic cases in the general 
population and individuals with other STDs is necessary (Patrono 
et al., 2020; Jonge et al., 2022; Peiró-Mestres et al., 2022; Sharkey et al., 
2022; Wurtzer et al., 2022; Gazecka et al., 2023; Tiwari et al., 2023; 
Wannigama et al., 2023; CDC, 2023d).

3 Environmental contamination of 
MPXV

3.1 MPXV persistence on surfaces in 
healthcare settings

The contamination of healthcare settings by MPXV and its ability 
to cause infection is also vital when dealing with the recent outbreak, 
significantly helping protect healthcare providers from getting infected 
(Nakoune et al., 2017). Healthcare professionals are a high-risk group 
for getting infected and infecting others as they are exposed to many 
patients daily.

Few cases of healthcare-associated human Mpox have been 
recorded in endemic African nations throughout history. These cases 
were documented in the Democratic Republic of the Congo in 1983 
(Ježek et al., 1986), the Republic of the Congo in 2003 (Learned et al., 
2005), the Central African Republic in 2015 and 2016 (Nakoune et al., 
2017), and Nigeria in 2017 and 2018 (Ogoina et al., 2019). Although 
all these exposures took place in hospital Settings, the precise routes 
of spread could not be determined. Between 2003 and 2021, at least 
250 healthcare professionals had varying levels of unprotected contact 
with MPXV while working in a hospital environment. Yet, only one 
incidence of nosocomial transmission is documented in the literature 
(Vaughan et al., 2020; Zachary and Shenoy, 2022). That case report 
represented a healthcare worker identified as having Mpox in the UK 
in 2018 and whose only known exposure risk was replacing a patient’s 
possibly contaminated bedding (Vaughan et al., 2020).

Further, fomite transmission has been reported as a single route 
of transmission of Mpox in two cases out of 3,924 cases (Salvato et al., 
2022). In this study, two cases of fomite transmission involved 
healthcare workers who spent an hour at the patient’s home, wore PPE 
(N95 masks, eye protection, gowns), only used gloves when taking 
clinical samples from patients, and avoided direct physical contact 
with the patient. Authors reported that Mpox could have been 
transmitted exclusively through fomites in those two cases in contrast 
to 2,420 out of 3,924 cases with direct physical or sexual contact as the 
transmission mode (Salvato et  al., 2022). Although indirect 
transmission through contaminated objects or surfaces has been 
reported, the evidence of fomite transmission for Mpox is currently 
limited (Vaughan et al., 2020; Kozlov, 2022). However, it is still a rare 
method of transmission. Other transmission methods are already 
considered, and variable preventive measures are applied for 
their prevention.

After demonstrating the evidence of the possibility of nosocomial 
transmission and evidence of surface contamination at the homes of 
the infected persons, the question of whether surface contamination 
in hospital settings and whether contaminated objects are a cause of 
Mpox dissemination is one the scientific community is preoccupied 
with (Kozlov, 2022; Ogoina and Ogunsola, 2022).

A study conducted in Germany evaluated the contamination of 
surfaces in hospital rooms and found that the most significant virus 
loads were found in toilets. However, contamination was present on 
all surfaces contacted directly by the patients. It was also detected on 
the patients’ mobile phones, toilet seats, and chair seat surfaces (Nörz 
et  al., 2022). Fabrics used frequently by the patients were also 
contaminated with viruses. After touching these fabrics by 
investigators, the investigator’s gloves were swabbed on the palmar 
side, and the contamination on that side was determined. Interestingly, 
these samples showed positive culture, which supports the evidence 
of infection from touching and objects used or touched by any 
infected person. In addition, all hand-contact sites, such as the door 
handle, in the anteroom that were investigated showed positive qPCR 
findings (CDC, 2003b; Ogoina et al., 2019; Vaughan et al., 2020; Gould 
et  al., 2022; Morgan et  al., 2022; Nörz et  al., 2022; Ogoina and 
Ogunsola, 2022; Pfeiffer et al., 2022; Zachary and Shenoy, 2022).

A more extensive study in a UK hospital (Gould et  al., 2022) 
found MPXV DNA in 56 (93%) of 60 surface swab samples taken from 
patient bedrooms and toilets. Some of the samples that tested positive 
were from places patients were not likely to have touched directly, 
such as the air vent over the bathroom door and the air vent above the 
bedroom door, indicating non-contact contamination, presumably 
through respiratory droplets or particles suspended in the air after 
changing bedding.

The DNA of the virus was also detected from two samples 
swapped from the gloves. The discovery of the contagious MPXV in 
air samples taken during a bedding change emphasizes the necessity 
of respiratory protection for healthcare professionals while conducting 
activities that could contain infectious material in contaminated 
settings (Ježek et al., 1986; CDC, 2003b; Nakoune et al., 2017; Ogoina 
et al., 2019; Vaughan et al., 2020; Ferré et al., 2022; Gould et al., 2022; 
Morgan et al., 2022; Nörz et al., 2022; Ogoina and Ogunsola, 2022; 
Ogoina and Yinka-Ogunleye, 2022; Pfeiffer et al., 2022; Zachary and 
Shenoy, 2022; Atkinson et al., 2022b).

There was variability in the frequency of virus detection from one 
patient’s room to another. That can be attributed to disease severity as 
the extent of contamination varies depending on viral load. Patients 
suffering from severe illness are more likely to have a higher viral load, 
leading to increased shedding and potentially higher environmental 
contamination. Also, the period during the patient’s illness when 
environmental sampling was done, staff or patient behavior, and 
Infection control measures. However, no variation in cleaning 
procedures might account for the variations in environmental sample 
data, and none of the patients’ clinical features can account for the 
variations in the findings of the air sampling for the various isolation 
rooms examined.

Other factors might have accounted for this variability, 
necessitating further investigation (Ježek et al., 1986; CDC, 2003b; 
Nakoune et al., 2017; Ogoina et al., 2019; Vaughan et al., 2020; Ferré 
et al., 2022; Gould et al., 2022; Morgan et al., 2022; Nörz et al., 2022; 
Ogoina and Ogunsola, 2022; Pfeiffer et al., 2022; Zachary and Shenoy, 
2022; Atkinson et al., 2022b).

In a cross-sectional study, Hernaez et  al. (2023) assessed the 
presence of MPXV DNA in saliva, exhaled droplets from a mask, and 
aerosols from patients with qPCR-confirmed Mpox infection 
attending two healthcare centers in Spain. They reported high viral 
load detected by qPCR in saliva samples and viable virus in 66% of 
qPCR-positive saliva samples. These findings signify that saliva might 
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assist in contaminating surfaces with the infectious virus, respiratory 
droplets, aerosols. According to studies above (Gould et al., 2022; 
Nörz et al., 2022), MPXV DNA has been found by qPCR on various 
surfaces in hospital rooms occupied by Mpox patients. Some 
contained the contagious virus, which the previous findings could 
explain. The exact persistence of MPXV in healthcare settings and its 
availability to cause infection is not identified definitively. However, 
the evidence of its persistence for 15 days in a home setting is alarming 
and should increase our attention (Morgan et  al., 2022). Thus, 
measuring its infectivity power and its existence raises a major 
concern. Numerous variables might affect a human being successfully 
being infected with a virus; therefore, just because a virus is detected 
in environmental samples does not always indicate that transmission 
resulting in infection would occur if that virus were exposed to a 
person (Gould et  al., 2022). These variables include modes of 
transmission, host susceptibility, environmental elements that may 
impair the virus capacity to replicate and infect cells, and the quantity 
of virus to which a person is exposed (Gould et  al., 2022). The 
infectious dosage ofMPXV in people is unknown and may vary 
depending on the body part exposed to the virus.

Various lessons should be  considered during this outbreak to 
protect healthcare providers and prevent the spread of the virus in 
hospital settings. Firstly, the pervasive surface contamination of the 
patient care environment necessitates a methodical, standard 
approach to surface disinfection of hospital settings and homes of 
patients with Mpox. Secondly, the discovery of MPXV DNA on 
personal protective equipment (PPE), in doffing areas, and air samples 
were taken at different distances from the patient bed and during bed 
sheet changes emphasizes the significance of using and removing PPE 
properly by healthcare professionals to prevent exposure to Mpox 
while providing patient care (Gould et al., 2022).

Third, since changing bedding may spread MPXV particles, staff 
members should wear surgical masks (with or without a face shield) 
at the very least to protect their mucous membranes (CDC, 2003b; 
Gould et  al., 2022; Ogoina and Ogunsola, 2022). Therefore, 
disinfectants must be used for sites of isolation of Mpox patients.

3.2 MPXV persistence on surfaces in 
households

Surface contamination may contribute to the spread of infection 
and is therefore essential to study, especially in the presence of 
asymptomatic cases that may contribute to virus transmission. Several 
studies have been conducted to measure MPXV contamination on 
different surfaces (Nörz et al., 2022; Pfeiffer et al., 2022; Atkinson et al., 
2022b). Despite this, little is known about the extent of surface 
contamination by MPXV. There are several gaps in knowledge, such 
as the duration of contamination of different surfaces, and further 
studies are necessary to provide more detailed and 
accurate information.

CDC and the Utah Department of Health and Human Services 
(UDHHS) investigated MPXV surface contamination on frequently 
used household surfaces in May 2022 (Pfeiffer et al., 2022). Patients 
were still symptomatic at the time of sample collection, obtained from 
9 different locations throughout the house and examined using 
qPCR. Of them, 21 of the 30 samples from porous objects tested 
positive for Mpox, and 17 of 25 non-porous items developed positive 

qPCR results. Fabric surfaces such as blankets and chaise lounge 
tested, and hard surfaces such as light handles and a keyboard tested 
positive. However, none of the surfaces that tested positive by qPCR 
yielded a positive viral culture test. It is suggested that cleaning or 
passing of time may have affected the viral load and inactivated the 
virus (Ježek et al., 1986; CDC, 2003b; Ogoina et al., 2019; Vaughan 
et al., 2020; Gould et al., 2022; Morgan et al., 2022; Nörz et al., 2022; 
Ogoina and Ogunsola, 2022; Zachary and Shenoy, 2022).

Additionally, environmental sampling was carried out in the 
house of a resident in the USA who had confirmed infection with the 
west African clade after travelling to Nigeria 15 days after the patient 
left the residence. Results suggested substantial MPXV DNA 
contamination as seven samples yielded viable viruses isolated in cell 
culture. That study demonstrated no difference in qPCR positivity 
between porous and non-porous surfaces but noted a significant 
difference in the virus detected in cultures. That suggests that porous 
surfaces may pose a higher risk of Mpox infection (Morgan 
et al., 2022).

In June 2022, another study investigated the presence and extent 
of surface contamination in the hospital rooms of two patients 
infected with MPXV on the fourth hospitalization day. All surfaces 
touched by both patients showed viral contamination, with the highest 
detected on bathroom surfaces. According to the number of viral 
copies per cm2 in the first patient, the highest viral load was found on 
the tap control lever, the seating surface toilet seat, and the mattress 
cover. In the second, the highest viral load was found on the towel in 
bed, soap dispenser lever, and pillowcase used to cover cooling packs, 
followed by the glove used by the examiner. After handling fabrics, the 
examiners’ gloves were immediately swabbed from the palmer side 
and found to have contamination levels in both patients (Nörz et al., 
2022). The investigators had successfully isolated MPXV using three 
different samples, each containing a minimum of 106 virus copies. As 
a result, contaminated surfaces that carry such viral loads or higher 
may be  contagious (Pfeiffer et  al., 2022; Atkinson et  al., 2022a; 
CDC, 2023d).

The CDC in the United States of America has advised that close 
contacts of Mpox patients should watch for any MPXV symptoms for 
3 weeks following the last exposure. In addition, the CDC 
recommended getting vaccinated and seeking medical attention if an 
unexplained rash emerged after touching an infected person. Sharing 
dishes, towels, bed sheets, clothes, drinking glasses, or other private 
belongings is also not advised (CDC, 2003b; Brown and Leggat, 2016; 
Patrono et al., 2020; Dye and Kraemer, 2022; Gould et al., 2022; Jonge 
et  al., 2022; Morgan et  al., 2022; Nörz et  al., 2022; Ogoina and 
Ogunsola, 2022; Peiró-Mestres et al., 2022; Pfeiffer et al., 2022; Sharkey 
et al., 2022; Wurtzer et al., 2022; Atkinson et al., 2022a,b; Gazecka 
et al., 2023; Tiwari et al., 2023; Wannigama et al., 2023; CDC, 2023d). 
It is strongly recommended to disinfect surfaces, and this should 
be done with cleaning supplies from the CDC and Environmental 
Protection Agency lists to prevent cross-contamination. Disposable 
gloves, a face mask, and clothing covering their arms and legs are all 
recommended when disinfecting. These suggestions are examples of 
ways to stop the transmission of Mpox; however, other nations may 
have different laws; therefore, they may not apply there (Klein, 1963; 
Kampf et al., 2002; Wutzler and Sauerbrei, 2004; Kampf et al., 2007; 
Rabenau et al., 2010; Steinmann et al., 2012; Brown and Leggat, 2016; 
Petersen et al., 2016; Becker et al., 2017; Siddharta et al., 2017; Dye and 
Kraemer, 2022; Ogoina and Ogunsola, 2022; Upadhayay et al., 2022).
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3.3 MPXV contaminating wastewater

Another concern was the contamination of wastewater. It is not 
fully known how MPXV ends up in sewage. Excretion and secretion 
of MPXV through faeces were observed in infected animals and 
humans (Patrono et al., 2020; Peiró-Mestres et al., 2022). Another 
plausible transmission mode is by skin flakes from affected body areas 
that wash into wastewater; this is supported by the high viral 
concentration found in blisters and scabs (Jonge et al., 2022).

According to data from various body fluids, viral shedding can 
occur from several body sites, including saliva, semen, urine, and 
faeces. That suggests that bodily fluids may play a part in the spread 
of disease (Peiró-Mestres et al., 2022).

To check for the existence of MPXV nucleic acids, a team of 
researchers examined the presence of DNA and RNA extracts from 
wastewater. Viral particles were investigated by examining the 
presence of packaged DNA in the viral capsid. Wastewater included 
human beta-2-microglobulin (B2M) RNA, indicating that excretion 
and washing can cause the nucleic acids found in human cells to 
be discovered in sewage (Jonge et al., 2022; Ogoina and Ogunsola, 
2022; Peiró-Mestres et al., 2022; Sharkey et al., 2022; Wurtzer et al., 
2022; Gazecka et al., 2023; Tiwari et al., 2023). Midway through July, 
MPXV was found in the wastewater treatment facility for the first 
time. Over time, higher quantities were observed. Data also revealed 
a correlation between wastewater levels and the amount of reported 
clinical cases (Brown and Leggat, 2016; Petersen et al., 2016; Dye and 
Kraemer, 2022; Ogoina and Ogunsola, 2022; Tiwari et al., 2023).

In addition, a recent study in Amsterdam detected MPXV DNA 
in wastewater samples from two wastewater treatment facilities, 
Schiphol Airport, and five different city districts. The sample was 
deemed positive if both the generic and west-African qPCR were 
present. Out of 108 wastewater samples, MPXV DNA was discovered 
in 45 of them. Because infected people may have passed through, 
samples from the airport occasionally tested positive for MPXV 
DNA. A sporadic rise in the number of positive samples taken in 
Schiphol was associated with an increase in confirmed cases. That is 
consistent with the study’s findings described earlier. To verify the 
DNA specificity, qPCR and an extra traditional qPCR were performed 
on a predetermined subset of the obtained samples (Klein, 1963; 
Kampf et al., 2002; Wutzler and Sauerbrei, 2004; Kampf et al., 2007; 
McDevitt et al., 2007; CDC, 2008; McDevitt et al., 2008; Russell, 2008; 
Eterpi et  al., 2009; Rabenau et  al., 2010; de Oliveira et  al., 2011; 
Steinmann et al., 2012; Bleichert et al., 2014; Eggers et al., 2015; Brown 
and Leggat, 2016; Campagna et al., 2016; Petersen et al., 2016; Becker 
et al., 2017; Siddharta et al., 2017; Dye and Kraemer, 2022; Ogoina and 
Ogunsola, 2022; Upadhayay et al., 2022; Meister et al., 2023).

Researchers collected wastewater samples between May and 
August 2022 from 63 sewered and non-sewered places in Bangkok’s 
city centre. qPCR was used to measure the MPXV DNA copy counts, 
and Sanger sequencing was used to validate the results as positive. 
Beginning in the second week of June 2022, wastewater samples 
containing MPXV DNA had a mean copy number of 16.4 copies/
mL. Sanger sequencing of positive samples confirmed the MPXV’s 
existence. According to preliminary analyses, the MPXV DNA from 
wastewater samples also belonged to the West African lineage. All 
places where MPXV DNA was detected had closed, un-severed 
sewage systems and were either public or commercial (Wannigama 
et al., 2023).

Investigators in Spain found MPXV DNA in 56 of 312 wastewater 
samples they took from various country locations. Their CT scores 
varied from 39.98 to 34.5. Interestingly, samples taken from Madrid 
WWTPs during week 23 of 2022, when just 275 cumulative cases had 
been reported across the entire region, consistently contained MPXV 
DNA. Additionally, some WWTPs with limited confirmed clinical 
patients reported intermittent detection (Girón-Guzmán et al., 2023). 
That could mean that silent infections are occurring more frequently 
than anticipated and that the reported clinical cases appear to 
be underestimated. To estimate the actual number of Mpox cases, 
wastewater monitoring is crucial during an outbreak. Another Polish 
study that revealed no relationship between the quantity of 
hospitalized patients in a given area and MPXV detection in WWTPs 
supports this result (Gazecka et al., 2023). That is in contrast to a study 
that found that the discovery and quantification of the MPXV genome 
in sewersheds in Paris coincided temporally with the discovery of the 
first case of infection and the spread of the disease throughout the 
population connected to the sewage system (Wurtzer et al., 2022).

Wastewater surveillance is a well-established supplemental 
epidemiologic tool that has been effectively employed for viral 
infectious illnesses, including SARS-CoV-2 and polio; therefore, 
investigating potential strategies for monitoring MPXV through these 
systems is crucial. Three distinct PCR tests that were previously 
developed for clinical samples were put to the test by a research team. 
To lessen the impact of nucleotide mismatches, they altered the tests 
by making alterations to the primer and probe sequences. Using real-
time or nested PCR and sequencing, three samples out of 20 tested 
positive for MPXV, demonstrating that these techniques can be used 
for wastewater-based epidemiology for Mpox outbreaks and offering 
fundamental resources, such as analytical techniques (La Rosa et al., 
2023; Tiwari et al., 2023).

Untreated wastewater can track the movement and dispersal of 
many diseases. As it contains a variety of biological materials, such as 
skin, vesicular fluid, saliva, semen, faeces, and respiratory and nasal 
secretions, it is perfect for monitoring. A customizable platform called 
wastewater-based surveillance (WBS) can show in real-time when 
infectious pathogens are being shed; genetic material may 
be  discovered days before symptoms or a healthcare facility’s 
confirmation of infection. WBS has advantages and disadvantages; 
benefits include cost-effectiveness, independence from testing 
capacity, patient permission to test, and data utilization by third 
parties. Disadvantages include the absence of standardization and 
interference from different substances; since WBE is not always 
sensitive enough to pick up minute amounts of pathogens, it might 
be  challenging to obtain reliable results from wastewater samples 
(Gerba et al., 1980; Farahbakhsh and Smith, 2004; John and Rose, 
2005; McDevitt et al., 2007; CDC, 2008; McDevitt et al., 2008; Russell, 
2008; Gundy et al., 2009; de Oliveira et al., 2011; Bleichert et al., 2014; 
Campagna et al., 2016; Sassi et al., 2018; Meister et al., 2023).

Detection of MPXVs in wastewater depends on many variables, 
including infection rate, water flow, viral shedding, and the process 
used for detection and analysis. Cross-reaction between the assay and 
non-targeted pathogens is a challenging possibility as wastewater 
contains many different microbes from multiple sources. The most 
concerning challenge with WBS is the lack of standard procedures and 
methodology used to collect samples, measure viral concentrations, 
extract DNA, and interpret data. Due to the scarcity of essential data 
on Mpox infection, it’s challenging to create a prediction model or to 
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establish a correlation between reported clinical cases and available 
WBS data. Further research is necessary to fill in critical knowledge 
gaps, such as the persistence of MPXV in different environments, 
MPXV DNA shedding in other body fluids, and the extent of MPXV 
infectivity in wastewater. Filling in these gaps is necessary to quickly 
develop a robust global WBS network (Klein, 1963; Wutzler and 
Sauerbrei, 2004; McDevitt et  al., 2007, 2008; Eterpi et  al., 2009; 
Rabenau et al., 2010; de Oliveira et al., 2011; Bleichert et al., 2014; 
Eggers et al., 2015; Campagna et al., 2016; Meister et al., 2023).

4 Controlling Mpox transmission

4.1 Disinfection of surfaces

The use of disinfectants to eliminate MPXV from the surfaces and 
environment is now considered a vital issue after proving its presence 
on the surfaces and in the environment and its possibility to cause 
infection (Gould et al., 2022; Nörz et al., 2022; Ogoina and Ogunsola, 
2022; Atkinson et  al., 2022a). Therefore, disinfection around the 
confirmed cases may be  necessary to lessen the risk of viral 
transmission via contaminated surfaces. Consequently, it is crucial to 
understand which disinfectants and biocidal chemicals are efficient 
against MPXV and other orthopoxviruses, even though it is doubtful 
that mpox would cause a worldwide health disaster (Dye and 
Kraemer, 2022).

Vaccinia virus has been extensively studied and used as a surrogate 
for other orthopoxviruses, including MPXV, due to its availability, ease 
of handling, and well-established protocols for inactivation an 
disinfection (Brown and Leggat, 2016). Many disinfection protocols 
and guidelines for orthopoxviruses, including those recommended by 
the World Health Organization, are based on studies using vaccinia 
virus as a surrogate (Petersen et al., 2016). While there may be some 
differences between the vaccinia virus and MPXV in their behavior in 
certain disinfection conditions (Upadhayay et al., 2022), vaccinia virus 
as a surrogate is generally considered appropriate, especially when 
primary data for MPXV is unavailable.

Ethanol (ranging 50%–90%) proved effective in suspension 
experiments against the vaccinia virus strain Elstree and the modified 
vaccinia virus Ankara (MVA) at concentrations ranging from 50% to 
95% within 1 min, even with varied organic loads (Kampf et al., 2002, 
2007; Steinmann et al., 2012; Siddharta et al., 2017). Phosphoric acid 
added to ethanol at 45% also worked for 30 s. However, ethanol only 
showed marginal effectiveness in doses of 40% or less (Steinmann 
et al., 2012). Formulas containing two kinds of alcohol and a combined 
alcohol content between 75% and 77.8% were likewise quite effective 
in 15 s (Kampf et al., 2002, 2007).

Peroxides also showed good effectiveness against the vaccinia 
virus (Kampf et  al., 2002). In suspension experiments, hydrogen 
peroxide proved efficient against the vaccinia virus at 14.4% 
concentration in 30 s (Wutzler and Sauerbrei, 2004; Rabenau et al., 
2010; Becker et al., 2017). Additionally, it was shown that peracetic 
acid rapidly rendered vaccinia viruses inactive at concentrations 
between 0.005 and 0.2% within 1 min and with 10% fetal calf serum 
(FCS) as an organic load (Rabenau et al., 2010; Becker et al., 2017). 
Glutaraldehyde was successful in suspension tests against the vaccinia 
virus strains Elstree and MVA at concentrations between 0.05 and 
0.5% within 5 min, often in the presence of 10% FCS (Klein, 1963; 

Rabenau et al., 2010). However, significant activity against vaccinia 
viruses was not documented at shorter contact periods of 30 s or 2 min 
(Klein, 1963; Rabenau et al., 2010).

With a low organic load, chlorine proved effective against vaccinia 
viruses in suspension testing at 0.64% in 1 min and 0.525% in 3 min 
(Eterpi et al., 2009; Eggers et al., 2015). Lower concentrations either 
needed longer exposure durations or were not powerful enough. 
However, increased albumin content as an organic load decreased the 
virucidal effectiveness (Eterpi et al., 2009). Under clean and unclean 
test circumstances, iodine was also potent against vaccinia viruses at 
concentrations between 0.045 and 1% within 1 min (de Oliveira et al., 
2011; Eggers et al., 2015). However, under dirty test circumstances on 
artificially contaminated stainless-steel carriers, sodium hypochlorite 
(0.25% and 2.5%) proved also efficient against the vaccinia virus in 
one minute (Eterpi et  al., 2009; de Oliveira et  al., 2011; Eggers 
et al., 2015).

An alkaline cleanser at 0.9% was shown to inactivate the vaccinia 
virus in 10 min under unclean conditions on artificially polluted 
stainless-steel carriers (Eterpi et al., 2009). Ultraviolet light (254 nm) 
has been shown to inactivate aerosolized vaccinia virus strain WR in 
a tabletop one-pass aerosol chamber in 7.6 s (McDevitt et  al., 
2007, 2008).

The vaccinia virus was more vulnerable to UVC with decreased 
relative air humidity (McDevitt et al., 2007). Similar outcomes were 
seen when the Western Reserve strain of the vaccinia virus was 
exposed to UVC light for 10 min through aerosol (254 nm) (McDevitt 
et al., 2007, 2008).

In summary, vaccinia viruses could be rendered inactive by a 
1 min application of 70% ethanol, 0.25% and 2.5% sodium 
hypochlorite, 14.4% hydrogen peroxide, 0.64% chlorine, and 0.045 
and 1% iodine. It also can be killed by a 3 min application of 99.9 
copper or 0.525% chlorine, 5 min of 0.55% ortho-phthalaldehyde, 
10 min of 2% glutaraldehyde, 0.2% peracetic acid, 0.9% alkaline 
cleanser, or 254 nm ultraviolet light. Few studies investigated the 
efficacy of some disinfectants on Mpox. For example, one study found 
that in 3 min, copper with a purity of 99.9% was as effective against the 
vaccinia virus as it was against MPXV (Bleichert et al., 2014). Another 
study on the hand rub formulations and alcohols recommended by 
the WHO found that, despite these disinfectants being effective, 
MPXV showed the greatest stability compared with other enveloped 
viruses (Meister et al., 2023). It is crucial to note that the efficacy of a 
disinfectant against MPXV can be influenced by parameters such as 
the kind and amount of organic material present, disinfectant 
concentration and contact time, and environmental temperature and 
humidity (CDC, 2008; Russell, 2008; Campagna et al., 2016). However, 
we  recommend validating disinfection protocols using MPXV to 
ensure their effectiveness in real-world settings.

4.2 Treatment of wastewater

Treatment of wastewater is a crucial step to avoid the further 
spread of diseases. Conventional treatment plants consist of a primary 
sedimentation step, secondary aerobic treatment and chlorination 
before reuse and discharge. The survival of viruses is mainly dependent 
on temperature; high temperatures denature proteins and increase 
enzymatic activity, decreasing viral survival rates (Gerba et al., 1980; 
John and Rose, 2005). Solvents and detergents also play a role as they 
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remove viral envelopes. Anaerobic treatment denatures proteins and 
nucleic acids (Gundy et al., 2009; Sassi et al., 2018).

Removal of viruses is usually greater in the secondary treatment 
plant; this is attributed to sludge and suspended solids in the 
secondary effluent to which viruses attach. Viruses are mainly 
adsorbed in the second treatment (John and Rose, 2005). Viral 
inactivation especially takes place in tertiary treatment, which is the 
most crucial step to stop the transmission of infection. Advanced 
treatment is membrane separation, used in water reuse. It also plays a 
role in removing viruses from wastewater. A study revealed that using 
foul membranes for microfiltration removed more viruses than clean 
membranes (Farahbakhsh and Smith, 2004).

The currently implemented wastewater treatment systems are 
adequate at removing MPXV from wastewater and helping prevent 
the spread of infection. However, further studies may be needed to 
provide more information regarding the optimal temperature and 
best-suited disinfectant to rid wastewater from MPXV completely.

5 Conclusion

Current evidence demonstrates the contamination of surfaces 
by infected persons with mpox that has been proven to be stable and 
viable in the environment, surviving for a varying time depending 
on factors that impact virus survival, such as the contaminated 
surface, humidity, and temperature. This is to be emphasized that 
positive qPCR results do not necessarily means viral infectivity. It is 
essential to keep in mind that indirect transmission of mpox 
through contaminated surfaces may present a significant issue for 
international health organizations by highlighting the risks of long-
distance transmission, bringing back the virus into an area that has 
attained regional elimination with extended outbreak duration. Due 
to asymptomatic cases, it is currently more challenging to identify 
the infection’s origin and spread. Thus, personal protective 
measures, such as hand washing and regular disinfection, should 
reduce environmental contamination and the possibility of 
virus transmission.

Wastewater surveillance is imperative in developing systems for 
efficient, timely control of diseases. However, poor urban planning 
structures, growing populations, and transportation challenges 
worsen the wastewater treatment problem in these countries. As a 
result, appropriate wastewater treatment services must be established.

In summary, focusing on interventions related to the highest-risk-
associated settings for mpox infection spread and transmission is an 
effective strategy for preventing and reducing the risk of mpox spread. 
Furthermore, our findings could form the base for future research into 
mpox transmission and persistence in the environment. It assists in 

preventing and reducing the negative consequences of this disease. 
Further research is needed to fill in knowledge gaps, to help 
understand the persistence of the virus on surfaces in healthcare 
settings and the environment, viral shedding and DNA levels in 
different body fluids and skin lesions, and the persistence of MPXV 
DNA and its infectivity in wastewater. Improvements in the analytical 
methods used to detect MPXV DNA in sewage are also needed.
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Glossary

qPCR Quantitative polymerase chain reaction

WBS Wastewater-based surveillance

DNA Double-stranded nucleic acid

RNA Ribonucleic acid

MPXV Monkeypox virus

RT-PCR Reverse transcription polymerase chain reaction

UV Ultraviolet

CDC Centers for Disease Control and Prevention

UK United Kingdom

STD Sexually transmitted diseases

MVA Modified vaccinia virus Ankara

FCS Fetal calf serum

B2M Beta-2-microglobulin

V2G Volcano 2nd generation

PPE Personal protective equipment

MSM Men who have sex with men

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

Q14 1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

https://doi.org/10.3389/fmicb.2023.1272498
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	Environmental detection and spreading of monkeypox in healthcare settings: a narrative review
	1 Introduction 
	1.1 Aetiology
	1.2 Epidemiology
	1.3 MPXV clades
	1.4 MPXV transmission

	2 Viral shedding
	3 Environmental contamination of MPXV
	3.1 MPXV persistence on surfaces in healthcare settings
	3.2 MPXV persistence on surfaces in households
	3.3 MPXV contaminating wastewater

	4 Controlling Mpox transmission
	4.1 Disinfection of surfaces
	4.2 Treatment of wastewater

	5 Conclusion
	 Author contributions
	Glossary 

	References

