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Abstract
Artificial intelligence (AI) is a machine science that can mimic human behaviour like intelligent analysis of data. AI func-
tions with specialized algorithms and integrates with deep and machine learning. Living in the digital world can generate 
a huge amount of medical data every day. Therefore, we need an automated and reliable evaluation tool that can make 
decisions more accurately and faster. Machine learning has the potential to learn, understand and analyse the data used in 
healthcare systems. In the last few years, AI is known to be employed in various fields in pharmaceutical science especially 
in pharmacological research. It helps in the analysis of preclinical (laboratory animals) and clinical (in human) trial data. 
AI also plays important role in various processes such as drug discovery/manufacturing, diagnosis of big data for disease 
identification, personalized treatment, clinical trial research, radiotherapy, surgical robotics, smart electronic health records, 
and epidemic outbreak prediction. Moreover, AI has been used in the evaluation of biomarkers and diseases. In this review, 
we explain various models and general processes of machine learning and their role in pharmacological science. Therefore, 
AI with deep learning and machine learning could be relevant in pharmacological research.
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ML  Machine learning
DL  Deep learning
MGI  McKinsey global institute
R&D  Research and development
MRI  Magnetic resonance imaging
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NLP  Natural language processing

LSSVM  Least square support vector machine
PSOWNN  Particle swarm optimized wavelet neural 
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EPNN  Enhanced probabilistic neural network
CNN  Convolutional neural networks
RDR  Referable diabetic retinopathy
CLI  Critical limb ischaemia
GLCM  Grey level co-occurrence matrix
SVM  Support vector machines
RF  Random forest
ANN  Artificial neural network
GAN  Generative adversarial network
VAE  Variational autoencoder
AAE  Adversarial autoencoder
QSAR  Quantitative structure–activity relationship
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NMR  Nuclear magnetic resonance
DNN  Deep neural network
Knn  K-nearest neighbouring
BP-NN  Backpropagation network
DNDD  De novo drug design

 * Puneet Kumar 
 puneet.bansal@cup.edu.in; punnubansal79@gmail.com

1 Department of Pharmacy, Unit of Pharmacology 
and Toxicology, University of Genoa, Genoa, Italy

2 Department of Pharmacy, Da Nang University of Medical 
Technology and Pharmacy, Da Nang, Vietnam

3 Department of Pharmacology and Toxicology, National 
Institute of Pharmaceutical Education and Research 
(NIPER), Lucknow, Uttar Pradesh 226002, India

4 Chitkara College of Pharmacy, Chitkara University, Rajpura, 
Punjab, India

5 Department of Pharmacology, Central University of Punjab, 
Ghudda, Bathinda, Punjab 151401, India

http://orcid.org/0000-0002-7978-1043
http://crossmark.crossref.org/dialog/?doi=10.1007/s43440-022-00445-1&domain=pdf


4 M. Kumar et al.

1 3

ADMET  Absorption, distribution, metabolism, excre-
tion, and toxicity

PPB  Plasma protein binding
MAH  Marketing authorization holder
ICSR  Individual case safety report
GWAS  Genome-wide association studies

Introduction

Artificial intelligence (AI) is a multi-disciplinary approach 
that has achieved great success in recent years especially 
in the area of machine learning (ML) and deep learning 
(DL) [1]. We are living in a technological world that gen-
erates huge amount of data every year in almost every 
field. AI provides assistance in handling the vast amount 
of data for humans. Thus, scientific societies generating 
big databases are considered as part of ML. Nowadays, 
machines are empowering humans in physical work and 
can provide rapid development at every stage. Machines 
have advantages over humans in various skills such as ana-
lysing, learning and understanding communication. ML 
can assess big data without any human intervention by 
developing and utilizing complex computer programmes 
and can also assist in various stages of drug discovery, 
including pharmacological research such as identification 
of lead compounds [2]. AI uses advanced mathemati-
cal processes and investigative procedures to process all 
types of data and overpower human intelligence. It plays 
a significant role in clinical pharmacology, including, 

molecular basis, epidemiology, and related disciplines at 
the population level. In this review, we briefly discuss the 
significant contribution of AI/ML in target identification 
and drug discovery (Fig. 1).

AI/ML in pharmaceutical sciences

Pharmaceutical sciences consist of a wide range of scientific 
procedures related to drug discovery and development. It 
requires many efforts for the expansion of health care ser-
vices. AI provides the best approach for a better health care 
system [3]. To get better results, AI and ML generally need 
a big amount of data and most of the pharmaceutical and 
healthcare sectors have extensive data [4, 5]. For example, in 
2019, The McKinsey global institute (MGI) generated up to 
$100 billion value worth of data in the US healthcare system 
[6, 7]. AI and ML are helping to manage the best health care 
options for physicians, consumers, insurers, and regulators. 
Data is generated from several sources such as academic 
domain, research and development (R&D) organisations, 
industrial units, clinical and community pharmacy [8]. AI 
and ML provides a better option to synchronize the large 
healthcare information and improve the healthcare system 
and treatments [9]. The use of AI and ML is already in pro-
cess in pharmaceutical industries for different tasks such as 
drug discovery and evaluation of active compound, disease 
diagnosis, clinical trial, radiotherapy, and smart electronic 
health record [10, 11].

Fig. 1  Demonstration of AI 
integration with machine 
learning and deep learning. AI 
artificial intelligence
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AI/ML in pharmacology

AI/ML has a significant influence on the pharmacologi-
cal sciences. The use of various analytical techniques such 
as magnetic resonance imaging (MRI), X-ray, electrocar-
diogram (ECG) and histopathological imaging give more 
refined results with the help of variable sensor and data 
acquisition systems when compared with the conventional 
technologies [12–14]. It also improves the healthcare-based 
data via detecting the retina and dermal response by analys-
ing input and stored data [15, 16]. Furthermore, AI provides 
health care services associated with animal research, such as 
animal behaviour, movement, physiological and pathologi-
cal changes, as well as selection of suitable drugs in specific 
conditions [17].

ML processes and their models

The ML process is quite similar to the learning behaviour 
of the human brain. The human brain works with billions of 
neurons by interpreting various perceptions such as images, 
sound, smell, structures, movements, and recognition of 
dimensional patterns. Similarly, machines work through the 
electronic nose to analyse and calculate the data [18]. ML 
process mainly requires two components. The first compo-
nent is Input (all the data presented for analysis) and the 
second component is Output (The result of the calculation 
done by the ML algorithm) [19, 20]. The ML process starts 
from the preparation of high-quality data like ML which 
randomises the data to exclude any anomalies or duplicates 
[20]. It divides the data into three sections: training data, 
validation data, and test data [21]. Before testing the differ-
ent datasets, it undergoes some training and validation, and 
after the data process, the next step is to select the algorithm 
and the learning model [22]. The selection of algorithm and 
learning model depends on the type of data and what task 
needs to be automated. In this procedure, usually, supervised 
models are used, but it requires labelled data points. How-
ever, in case of insufficient data: unsupervised, semi-super-
vised, or self-supervised learning models can be used [23]. 
In the training phase, the algorithm matches the outcome 
with the previous output, and if there is any kind of error 
the model is amended and another iteration is tested [24].

Model of ML

As discussed above, based on the type of data, ML is divided 
into three models: supervised learning, unsupervised learn-
ing, and reinforcement learning. The supervised model 

requires well-labelled input data for learning and after train-
ing, the algorithm can analyse non-labelled data [25]. In 
this model, the elements are sorted into groups with prede-
fined features, and the value is predicted based on training 
data calculations [26]. Whereas in unsupervised learning, 
the machine tries to find patterns and correlations between 
non-labelled data points [27]. Consequently, an algorithm 
must assemble data by characteristics which differentiates 
them from other groups of objects. Data types such as MRI 
scans, digital photographs, and audio signals are character-
ized by high dimensions that indicate the number of features 
for each observation [28]. ML decreases the amount of data 
by selecting important attributes or combining similar traits.

AI in medical diagnosis

A vast number of articles published on diverse applica-
tions of AI demonstrate that AI is successfully deployed in 
medical diagnoses like skin cancers, neurological diseases, 
strokes, Alzheimer’s disease, acute ischaemic stroke, etc. 
Natural language processing (NLP), the first reading device 
to provides excellent flexibility for doctors to study the 
descriptors of X-rays on the chest are also used to treat infec-
tious diseases [29] and least square support vector machine 
(LSSVM) used in cancer diagnosis were introduced based 
on AI [30]. After two years, SVM was used to identify neu-
rological as well as psychiatric disease imaging biomark-
ers [31]. Breast defects can be diagnosed by particle swarm 
optimized wavelet neural network (PSOWNN) [32]. Various 
combinations of SVM are used to detect the initial stage 
of Alzheimer's disease [33]. Similarly, Parkinson’s disease 
can be diagnosed with the help of an enhanced probabilistic 
neural network (EPNN) [34]. Convolutional Neural Net-
works (CNN) was proposed [35] in the study of referable 
diabetic retinopathy (RDR) in diabetic patients. The Naïve 
Bayes classification was proposed that observed and rectified 
heavy stroke lesions of people T1-weighted MRI scans [36]. 
Recently it has been demonstrated that an 11-layer deep, 
multi-scale, 3D CNN used for the lesion segmentation in 
multimodal brain MRI [37].

CNN is also used to diagnose, stratify, and treat con-
genital cataracts [38]. A study improved the laboratory AE 
reporting using NLP to study EMR-based AE ascertainment 
and grading substantially [39]. NLP is also used to imple-
ment the EMR’s power to determine a group of patients with 
intracranial aneurysms [40]. A study used EMR and NLP 
to evaluate the suicidal behaviour of pregnant women [41]. 
Moreover, various studies used NLP-based algorithms to 
diagnose different diseases such as critical limb ischaemia 
(CLI) [42], acute ischaemic stroke (AIS) [43], and ischaemic 
Stroke Thrombolysis [44].
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Apart from the human-based databases, AI also is 
employed in veterinary and agricultural sciences such as 
hybrid prediction, cattle behaviours, disease identification, 
chewing patterns, etc. Dairy cattle are used to develop ANN 
models for rumen fermentation patterns [45]. Previous stud-
ies introduced grey level co-occurrence matrix (GLCM) to 
determine patterns with several variations, robustness to 
geometrical distortions, and simple transformation of the 
cattle race, in contrast, energy, and homogeneity [46]. AI is 
also involved in the development of agricultural techniques 
[47]. A study evaluated an automated and accurate detection 
method in rice seedlings of the pathogen, which took less 
time than a naked eye examination [48]. A tool based on 
ANN/XY-Fusion identifies and differentiates the infected 
and healthy plants during the growth of vegetation with 
95.16% accuracy [49]. Similarly, a technique based on the 
SVM image differentiated the parasites and thrips in straw-
berries [50]. Another CNN-based method differentiates the 
fresh and diseased leaves [51].

AI in drug discovery and development

Generally, a molecule takes approximately 13.5 years to 
reach the point of approval with total research and devel-
opment (R&D) estimated costs around $2.6 billion [52]. 
However, AI development has immensely impacted drug 
discovery and development with numerous advantages such 
as speeding up the time, reducing cost-consuming lengthy 
protocols due to the better utilization of available resources 
[53]. The creative collaboration between mind and machine 
has been anticipated for better decisions in the process of 
drug designing, chemical synthesis, and analysis of biologi-
cal tests. The general workflow of building an AI model in 
drug discovery includes four stages: first, the definition of 
the problem that is specific or general needs to be clarified; 
second, choosing suitable AI algorithm and setting initial 
values for hyperparameters that provides appropriate AI 
architecture; third, the input data need to be prepared that 
are satisfactory in quality and quantity, representation char-
acteristic, fitting proportion; lastly, the model training and 
evaluation such as training algorithms, optimization strat-
egies, evaluation mechanisms and metrics, and the hyper-
parameter tuning algorithms are chosen [54].

In the first and second stages, various frequent algorithm 
models like support vector machines (SVM), random for-
est (RF), artificial neural network (ANN), deep Boltzmann 
machine, deep belief network, generative adversarial net-
work (GAN), variational autoencoder (VAE), adversarial 
autoencoder (AAE), symbolic learning, and meta-learning 
can be applied in the construction model [54, 55]. Notably, 
ANN is one of the most powerful nonlinear data models- 
it has gained broad popularity in the past 2 decades as it 

implements into a quantitative structure–activity relation-
ship (QSAR) and virtual screening [56, 57]. Meanwhile, the 
GAN technique has been contributed to medicinal chemistry 
as molecular de novo design and biochemical science as 
de novo peptide and protein design, dimension reduction of 
single-cell data in preclinical development [58].

There are two main types of data including input X and 
output Y for building AI models; the input X data can be 
a fixed-length input vector (molecular descriptors, finger-
prints), a sequence (SMILES strings, biomacromolecule 
structures), or molecular structure graph; the output data 
can be real-valued numbers, binary values, integer values, 
fixed-size vector, sequential data, single data column or mul-
tiple data columns [54]. Due to the large volumes of input 
data, several database libraries have been summarized to 
provide comprehensive information: for example, in bio-
molecule target identification, the platforms DisGeNET, 
CTD, LinkedOmics, Open-Target platform, DepMap portal, 
HMDD, STRING, Therapeutic Target Database-TTD have 
supported in managing the heterogeneous omics data [43].

To the last stage, for model training, a one-shot learning 
algorithm has been introduced, set up the iterative refine-
ment of the long short-term memory architecture, and 
received strong results in predictive power meaningful for 
low-data drugs discovery. A continuous, data-driven auto 
encoder model has been applied in chemical design as opti-
mization methods in the reconstruction of SMILES strings 
and capturing characteristic features of a molecular training 
set.

AI in peptide‑based drug discovery

Peptide as a therapeutic option in drug discovery pro-
cess has received more attention over the last few decades, 
particularly for anticancer peptides, antimicrobial, and anti-
inflammatory peptides. In comparison to small molecules, 
peptide-based therapy has high specificity and low toxic-
ity. Therefore, peptides are widely used in discovery and 
design of newer drugs [59]. Moreover, biopeptide discovery 
and development are labour-intensive, time taking process 
and mostly dependent on a. variety of factors. However, the 
ML approach can predict the use of therapeutic peptides 
quickly and effectively. It can improve decision making and 
discovery for well-defined queries. Some of the machine-
based methods such as support random forest, extremely 
randomised tree, and DL methods are effective in peptide-
based drug development. These approaches make to predict 
functional peptides with greater accuracy [60]. To predict 
therapeutic peptides, three tools are proposed: blood–brain 
barrier penetrating peptides (BBPs), antihypertensive pep-
tides, and antiparasitic peptides. Prediction of BBPs using 
a random forest method accelerating the discovery of new 



7Opportunities and challenges in application of artificial intelligence in pharmacology  

1 3

drugs to treat several brain diseases [61]. Additionally, 
anticancer peptides (ACPs) are therapeutic peptide drugs 
that have been shown to target and kill cancer cells. ACPs 
based on ML and DL have several benefits, including high 
specificity, and low toxicity under normal physiological cir-
cumstances [62]. During the COVID-19 pandemic, a pep-
tide library was created to combat the SARS-Cov-2 virus 
of which four peptides were found effective, having high 
binding affinity for protease enzyme using AI [63]. Fur-
thermore, researchers studied the role of dietary peptide in 
immunomodulating activity with the help of AI algorithm 
and found that this bioactive peptide has a high affinity for 
inflammatory receptors and suppresses the expression of 
pro-inflammatory cytokines such as tumour necrosis factor 
(TNF-α), and nitrogen oxides [64].

Structure‑based virtual screening (VS)

The identification of drug-target interactions is crucial in 
drug development and hence, sophisticated ML techniques 
in VS via verifying the physicochemical properties related 
to compound structures and/or target receptors have been 
demonstrated to generate predictive models [65, 66]. VS can 
be divided into structure-based virtual screening (SBVS) and 
ligand-based virtual screening (LBVS). Structure-based vir-
tual methods utilize 3D structures of the targets and com-
pounds that have been confirmed by X-ray crystallography 
or nuclear magnetic resonance (NMR), respectively. Molec-
ular docking a major technique in VS contains two steps: 
first, a ligand from a database platform is virtually docked 
into the binding site of the receptor based on the steric and 
physical, chemical properties; then, a mathematical scor-
ing function will calculate the energetic binding affinity [66, 
67]. Some of the most popular docking tools are AutoDock, 
Glide, DOCK [68–70].

Recently, AI algorithms have been applied in nonpara-
metric scoring functions to estimate the binding affinity and 
correct the disadvantages of classical methods as well as 
improving accuracy [43, 54, 71]. The basic techniques that 
are applied to improve scoring function in AI include naïve 
Bayes, SVM, RF, feed-forward ANNs, and deep neural net-
work (DNN) approaches [54, 72–74]. Currently, the novel 
method as Similarity of the Interaction Energy Vector Score 
inspired from finger-print methods is also proposed with 
accuracy improvements [75].

In the context of ML approaches, RF and SVM have been 
applied to improve docking scoring functions [71]. ML-
based RF-Score has been formerly introduced that extremely 
improves training set size and obtained protein–ligand bind-
ing affinity predictions in the diverse test set [76]. It has 
been presented recently that ALADDIN- an integrated ML 
and docking approach and the RF classifier implicated the 

accuracy in establishing all‐against‐all ensemble docking in 
VEGFR2, p38α MAPK, and GCR and solved the challenges 
in docking and scoring functions such as protein flexibility, 
solvation [77]. Several algorithms have been conducted such 
as k-nearest neighbuoring (kNN), Neural Network, RF, and 
SVM based on leave-one-out random sampling model to 
establish novel P-glycoprotein inhibitors (the input com-
pounds were retrieved from the ChEMBL database) then 
the RF algorithm performed better in learning and valida-
tion. Recently, traditional problem was fixed in the naïve 
Bayesian model (the classifying performance of compounds 
could decrease when more receptor structures were added to 
the ensemble) via several ML models such as kNN, logistic 
regression, SVM, and RF for 20 protein kinases [73].

Also, deep learning (DL) a subset of ML used to improve 
docking results has been extensively implemented in drug 
design and development [55, 71]. For example, a study 
developed a DL neural network architecture that the input 
data were protein voxels and ligand fingerprints, and the 
output linear data were  RMSDmin,  RMSDave, and nRMSD by 
DockBench [78]. Previously, introduced, DeepVS, based on 
CNN has been introduced which also achieved good results 
(the best AUC ROC has ever reported) without human-
defined parameters [79]. In general, the AI application in 
structure-based virtual screening is a promising tool; how-
ever, the output depends on multiple features such as the 
dataset, AI models and the definition of precise parameters 
[74, 80].

Ligand‑based virtual screening

LBVS is the first choice when the 3D structure of the target 
compound is not available. It is based on the hypothesis that 
if the structures are similar, then the biological effects are 
the same [54, 81]. So far, the AI approach has been applied 
in the field of QSAR based LBVS successfully [81]. Similar 
AI algorithms to the SBVS methods (as mentioned above) 
implemented in QSAR based LBVS include ANN, RF, 
SVM, Bayesian algorithm, DNN, kNN [81, 82].

ANN the most popular paradigm for nonlinear model-
ling in QSAR aims to imitate the human nervous system 
workflow and contains several neuron layers. ANN is inte-
grated with adaptive neuro-fuzzy inference systems and 
multiple linear regression (MLR) to the dataset consisting 
of 90 pyridinylimidazole‐based compounds (inhibitors of 
p38Rmitogen‐activated protein kinases); the performance 
of ANN was a better predictor model (ANN vs MLR,  R2 
training: 0.8520, 0.4049, respectively) to establish phys-
icochemical properties and output descriptors relationship 
[83]. A study optimized ANN architectures and interpreted 
six differnt methods (partial derivative-PaD, pairwise par-
tial derivative, weights, perturbation, profile methods, and 
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sum of ranking differences analysis) to figure out the rela-
tionship between quantum mechanical molecular descrip-
tors and output (Trolox‐equivalent antioxidant capacity of 
33 flavonoids). The authors concluded that the PaD and 
profile methods were most stable [84]. There are several 
subtypes of ANNs such as feed-forward backpropagation 
network (BP-NN), radial basis function networks and 
probabilistic neural networks, and linear regression was 
combined with nonlinear BP-NN-QSAR model to inves-
tigate inhibitory activities of pyridinone derivatives with 
HIV-1 reverse transcriptase; the results showed that the 
model was robust and cost-effective for pIC50 estimation, 
capable of prediction of complex relationships [85]. Previ-
ously, it has been presented as three molecular fingerprints 
(namely FP2, MACCS, and ECFP6) combined ANN-
QSAR (FANN-QSAR) to predict biological activities of 
cannabinoid ligands; after validation, ECFP6-ANN-QSAR 
required no alignment in the training process, and its per-
formance consistently across diverse data sets was bet-
ter than others [82, 86]. In summary, the ANN algorithm 
achieved good generalization, high prediction accuracy, 
and pattern recognition ability for unseen data [54, 86].

Among the other methods, DNN is a powerful tool that 
can deal with large data without manual engineering. It is 
built on six datasets collected from the ChEMBL database 
(EGFR inhibitors); the DNN model also obtained high per-
formance in comparison with the RF method by cross-val-
idation or screening a large compound library (PubChem, 
ChemDiv database) [87]. Besides, the least-squares- SVM 
(LS-SVM) and genetic algorithm-MLR algorithms has been 
conducted to predict  IC50 of poly ADP-ribose polymerase-1 
inhibitors for breast cancer, the outcomes  (R2, F, RMSE, 
 Q2

cv) proved that LS–SVM had good potential mathematical 
optimization base in comparison with MLR [88]. Moreo-
ver, RF and Multiple Partial Least Squares Regression, RF 
model was more stable, reliable, and precise in toxicity pre-
diction of nano-TiO2 on Hk-2 cells [89].

In other studies, the authors developed multiple algo-
rithms to investigate QSAR [90–92]. For example, A study 
combined kNN, SVM, MLR, neural nets to predict the brain 
uptake ability of 25 known drugs obtained from PubChem 
[90]. Previously, seven methods (naïve Bayes classifier, 
Sequential Minimal Optimization–SMO, Instance-Based 
Learning, Decorate, Hyper Pipes, PART, and RF) have 
been conducted on the thirteen data sets (HIV-1 integrase 
inhibitors from ChEMBL database), the SMO was the 
highest efficiency to classify compounds [91]. Screened 
for histone deacetylase-3 inhibitors has been done by five 
ML classifiers (kNN, SVM, RF, DNN, eXtreme Gradient 
Boosting–XGBoost), and the best-performing one was the 
XGBoost. Altogether, developing numerous AI algorithms 
and larger data sizes have been devoted to the LBVS growth 
and acted as a useful tool in drug R&D [92].

De novo drug design

The concept of de novo drug design (DNDD) based on 
AI with diverse techniques (e.g.: the autoencoders—AE, 
graph neural networks—GNNs, GAN, CNN, and the 
recurrent neural networks—RNNs) aims at generating 
novel compounds (previously unknown) with desired prop-
erties [93–95]. Normally, the algorithms contained two 
steps: firstly, from the worthy databases (CHEMBL, ZINC, 
PubChem), the model automatically generated new mol-
ecules based on rules (SMILES, molecular graph); sec-
ondly, reinforcement learning methods speed up to explore 
the novel regions to design structures with promising 
activities [94]. The benefits of DNDD are tremendous such 
as broaden exploration of chemical space, lessen costs, 
time-efficient manner, designed structures with intellectual 
properties; however, the challenges remain as synthetic 
procedure of the formulas, the regulatory acceptance and 
standard of the models, analysis, sharing platforms, or 
training datasets [25].

RNN-based generative models are suitable for sequen-
tial data (SMILES) and can be applied for multi-objec-
tive evolutionary DNDD [95]. RNN model composed of 
three layers with 512 gated recurrent units per layer in a 
multi-objective approach targeting neuraminidase, acetyl-
cholinesterase, novel SARS-CoV-2 main protease. This 
framework was suited for lead generation and optimiza-
tion phases; the compounds were generated with relevant 
physicochemical properties (MW, logP, HBA, HBD) [94]. 
RNN trained by reinforcement learning with a special 
exploration strategy (Drugex) to design inhibitor ligands 
of adenosine A2A receptor; for the training process, 
10,000 SMILES sequences were constructed; this strategy 
generated molecules with diverse chemical activities while 
maintaining the similarity to the known ligands [96]. Fur-
thermore, the recently established bidirectional generative 
RNNs for SMILES-based molecule design (BIMODAL), 
30,000 unique and novel SMILES samples were used in 
the training set, this method suited for scaffold diversity 
and chemical-biological relevance (evaluated by FCD val-
ues- with 1024 hidden units, FCD = 1.59 ± 0.03 when the 
starting point was fixed, FCD = 1.62 ± 0.04 when the start-
ing point was random- were lower than other models) [97].

In other studies, the CNN model has been successfully 
employed in image processing in both training and test 
phases as a feature detector [95], classify images, score 
protein–ligand, and pose prediction [98]. Lately, the GNN 
model can be operated on the graph structure data and can 
be applied in molecule scoring, generation, and optimiza-
tion [99]. Meanwhile, GAN architecture provides better 
results in image generation processing [58] for exam-
ple, implementation of Mol-CycleGAN—a CycleGAN 
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framework to optimize compounds from ZINC, ChEMBL 
databases with high structural similarity and 99.75% suc-
cess [100]. Lastly, autoencoder models can be catego-
rized into three subtypes such as VAE (the algorithm that 
converts discrete representations to multidimensional 
continuous values of molecules), sequence-to-sequence 
autoencoder (an algorithm that transfers an input sequence 
to a fixed-sized vector), AAE (a model utilized to gener-
ate molecules with the desired properties in the form of 
fingerprints) [95]. Hence, the diversity of these methods 
allows the development of AI approaches in drug discov-
ery and tremendous advantages, as mentioned above.

AI applications in ADMET predictions

Currently, in silico absorption, distribution, metabolism, 
excretion, and tolerable toxicity (ADMET) assessments 
have progressed tremendously alongside the rise of AI 
tools, the more accurate models have been developed [101, 
102]. Methods such as DNNs, ANNs, RFs, and SVMs, k-NN 
have opened broad boulevard in this field with good perfor-
mance, however, several factors should be considered, such 
as encoding functions, the quantity, and quality of input data 
[95]. Intestinal drug absorption is one of the most influen-
tial in bioavailability, several studies have established for 
accuracy with acceptable range [95, 103]. An innovative 
hierarchical SVM scheme was developed to forecast colon 
carcinoma cell layer (Caco-2) on a dataset containing 104 
and 26 molecules (training and test set, respectively), the 
model showed excellent qualitative performance, unveiled 
great accuracy [103]. Earlier, DNN architecture was pro-
posed using 209 molecular descriptors and obtained good 
discriminant power for cellular permeability prediction in 
Caco-2 cell lines of compounds [104]. In a larger dataset 
(1272 compounds) four methods MLR, partial least-squares 
PLS, SVM, and boosting to predict permeability, and the 
boosting model was combined together which was the most 
suitable with the highest  Q2, RMSE, CV,  R2 values com-
pared to others [105].

Plasma protein binding (PPB) is a significant pharma-
cokinetic property that influences the drug volume distribu-
tion. Due to the time-consuming and high cost of common 
experiments, in silico construction of predictive models 
using heterogeneous data has been developed [106]. Pre-
diction of the PPB values of cyclic peptides by two algo-
rithms (enumerating lasso solutions -ELS and forward 
beam search—FBS), the ELS was more robust in predict-
ing diverse molecules with high generalization ability [107]. 
In a study, the authors presented six models (SVM, ANN, 
k-NN, PLS, Probabilistic neural network, Linear discrimi-
nant analysis) in a 736 compounds dataset; all methods had 
high efficiency in binary classification and PPB prediction, 

SVM demonstrated the best accuracy, sensitivity, specific-
ity, precision, and F1 score [108]. In addition, prediction 
models have also been established to deepen knowledge on 
other natural barriers (e.g., the blood–brain barrier–BBB) 
that affect drug distribution [109]. DL-based RNN has been 
proposed to predict compounds penetration to the CNS, the 
accuracy and specificity scores were 96.53% and 98.08%, 
respectively; the dataset comprised compounds encoded in 
SMILES (1803  BBB+ and 547  BBB− compounds) [110]. 
For small molecules, several binary classifiers and logistic 
regression were proposed (18 models) to predict BBB abil-
ity of marine-derived kinase inhibitors, the accuracies of 
RF, gradient boosting, and logistic regression was the top 
performed model. Briefly, the extensive applicable scope 
of AI approaches can reduce the workload of many clinical 
trials on drug distribution research [111].

Several studies of AI in the field of metabolism predic-
tions have been carried out to investigate the location sites 
of metabolism, the isoforms that were responsible for the 
procedure, and metabolic pharmacokinetics, pharmacody-
namics (drug-drug interactions) [95, 112]. DeepLoc (DNN-
based model) has been presented to predict protein subcel-
lular localization from the dataset extracted from the UniProt 
database, the accuracy obtained was highest (compared to 
other methods: LocTree2, MultiLoc2, MultiLoc2, YLoc, 
CELLO, iLoc-Euk, WoLF PSORT) in the independent 
test set [113]. Application of the Laplacian-modified naïve 
Bayesian method to categorise the inhibition potency of 
4500 compounds on five CYP isoforms [114]. Furthermore, 
a multilabel kNN, twin SVM, and five network-based label 
space division (NLSD)-based methods to study CYP450—
substrate selectivity on the dataset of 484 compounds and 
1299 compound/isoform pairs; NLSD-XGB achieved the 
best performance in both CV and HO methods [115]. A 
study presented a Super CYPsPred web server based on the 
RF algorithm focussed on five CYPs isoenzymes, containing 
17 143 substances to investigate the CYP inhibition abil-
ity and CYP inhibitors interaction [116]. A new sequence 
method has been proposed based on distance-weighted k-NN 
to identify G-protein coupled receptor (GPCR) drug interac-
tion [117]. A study predicted drug exposure (AUC, Cmax, and 
Tmax) by the BIOiSIM platform integrated coarse-tuning and 
fine-tuning algorithms [118].

The development of AI-based excretion predictors to 
investigate the clearance pathways have grown recently. 
Recent development of CPathPred—the SVM-based predic-
tor on the dataset containing 141 approved drugs for major 
clearance pathways and increased easily molecular descrip-
tors [119]. It has been accessed that total plasma clearance 
 (Cltot) of 1114 compounds by StarDrop used eight different 
techniques (PLS, radial basis function fitting—RBF, RF, 
Gaussian process models—GP with the two-dimensional 
search for parameters (GP2DS), fixed hyperparameters 
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(GPFixed) and hyperparameters were obtained by for-
warding variable selection (GPFVS) and rescaled proce-
dure (GPRFVS), and by conjugate gradient optimization 
(GPOPT)); these in silico models showed better predictiv-
ity compared to in-vitro assay [120]. Therefore, the utility 
of ML approaches improves the screening paradigm in the 
early phase of drug R&D with multiple benefits.

To predict drug toxicity, advanced AI algorithms have 
been applied to construct several web tools and pack-
ages: BlueDesc, ChemoPY, Mole dB, PaDEL-Descriptor, 
DRAGON, AdmetSAR 2, Lazar, ProTox II [95, 121]. Vari-
ety ML methods such as SVM, RF, naive Bayesian, back 
propagation neural network, k-NN, C4.5 decision tree (C4.5 
DT) have been developed for toxicity evaluation, such as 
mitochondrial toxicity, protein toxicity, reproductive toxic-
ity, haemolytic toxicity [122–124]. For example, A study 
introduced seven ML methods on the dataset of 284 food 
and drug administration (FDA) approved drugs, the naïve 
Bayes classifier was the best predictive performance and 
stability [125]. A study tested 246 compounds that were 
implemented in four models (RF, Gradient, Boosting, DL); 
the combination of ML and structural alerts was a power-
ful tool to forecast mitochondrial toxicity [122]. In a large 
dataset (2487 compounds) six ML methods (SVM, ANN, 
C4.5 DT, RF, kNN, and Naive Bayes) were used and, the 
SVM classifier performed the most accurate in predicting 
reproductive toxicity [126]. For the first time in literature, 
evaluation of haemolytic toxicity of 452 saponins by four 
ML methods (SVM, k-NN, RF, gradient boosting machine) 
and developed “e-Hemolytic-Saponin” programme to pre-
dict toxicity automatically [124]. Briefly, the breakthrough 
of ML has the utility of the early design stage and is becom-
ing an attractive, reliable tool; nevertheless, many obstacles 
are remaining as the chosen model architecture, model over-
fitting, data source [121].

Overall, ADMET evaluation via ML approaches has pro-
vided high reliability and robust advancement. Currently, the 
AI-based ADMET predictor tools remain not yet replacing 
the in vitro, in-vivo measurements. The strategy has grown 
and reduced time and cost consuming in drug hit-to-lead and 
lead-optimization processes.

Role of AI in adverse drug reactions

The 3 aspects of monitoring, detection and prevention of the 
adverse reactions produced by the newly developed or devel-
oping drugs come under the scope of Pharmacovigilance. 
The unwanted effects that can be seen in the population from 
a normal tested dose of the drug are the major concern that 
extends in the post-marketing surveillance of the drug. A 
large number of databases are generated for the report of the 
adverse event. To address the issues such as under-reporting 

of certain events which are rare, certain statistical and com-
putational tools are used. Ensuring drug safety is divided 
into two phases. The first phase involves the evaluation of 
drugs for their adverse events and toxicities before launching 
it in the market when the drug is in developmental stages, 
and the other phase involves reporting adverse events in the 
population when the drug is marketed.

The databases generated to report and analyse the adverse 
drug reactions are huge, and developing countries usu-
ally adopt systematic collection methods associated with 
the marketing authorization holder (MAH) industries and 
Adverse drug reaction monitoring centres. The extended 
processes incorporate the detection of adverse drug events 
and their severity, generation of a technical database, report-
ing of drug-drug interactions, and generating the safety 
reports. These protocols are extensively time-consuming 
and need human intervention, which creates more chances 
of errors. Data collected worldwide is so vast and requires 
new technological progress to keep track of such data [127].

AI plays a crucial role in Pharmacovigilance. First, it 
uniquely identifies the incoming data and kind of adverse 
drug events and also helps in reducing time and burden for 
processing the data. It also perks up the quality of informa-
tion and also evaluates the case studies without any human 
interference. However, with this system economic aspect 
remains questionable [128]. AI deploys novel methods such 
as ML and DL techniques from the data generated before 
and after the marketing of the drug candidate.

The electronic reporting system collects mixed elements 
from various healthcare facilities. To generate meaningful 
data with utmost accuracy, DL has an insightful effect as 
it incorporates features such as image and speech recogni-
tion and processing of language in the natural form. Various 
reports also suggest that neural networks and their massive 
webwork have improved the analytical application of DL. 
The current models of DL significantly mould the raw data 
and recognize the clinical outcomes with accuracy [129]. 
ML, on the other hand, is an algorithmic technique that 
defines boundaries between variables and generates a model 
based on the given data to make accurate predictions [130].

Individual case safety report (ICSR) is a body that oper-
ates in accordance to the FDA regulations and provides 
information for adverse events, product defects, and con-
sumer complaints. A quite number of ML techniques are 
adopted to increase work efficiency and reduce the labour. 
First, all the raw facts and figures are inserted in a structured 
or unstructured manner. Then natural learning processes and 
ML processes are used to dig out ICSR content, which is 
usually not refined. At this point, AI plays a significant role 
in listing out the events, classifying the drugs on the required 
basis, and carrying out the necessary correlations [131].

There are specific tools of AI which are used to assist 
these functions. For instance, to carry out the analysis of 
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the recorded structured data, VigiBase is used. About 20 
million adverse drug report databases are generated using 
this tool. To access the VigiBase, another tool named 
VigiAccess is used [132]. VigiFlow is another web-based 
platform that monitors the online sharing and collection 
of data to execute a functional analysis. And to obtain the 
clinically relevant information score of an individual case 

report, VigiGrade is employed. VigiRank is another inter-
face for the detection of statistical signals [133]. Another 
important domain is the clinical evaluation, which accord-
ing to the Bayesian Confidence Propagation Neural Net-
work is carried out by the WHO-UMC [134]. Although 
AI applications are abundant, the only shortcoming is the 
economic impact of such systems (Fig. 2A and B).

Fig. 2  A, B Applications of AI 
in different fields. AI artificial 
intelligence; NDA new drug 
application; QA/QC quality 
assurance/quality control; QSAR 
quantitative structure–activity 
relationship
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Role of AI in drug repurposing

Drug development is a process that takes a tremendous 
amount of effort, time, and cost. Drug repurposing pro-
vides a fundamental opportunity to use the existing can-
didates for different therapeutic purposes, exploiting the 
fact that a known candidate can have more than one tar-
get site [135]. This has been made easier with the help 
of various computational approaches such as molecular 
docking that has developed an extensive database for the 
evaluation of the drug effects on different targets. One such 
example is the connectivity map (CMap) used for mRNA 
and gene expression, GWAS (genome-wide association 
studies). Excellent platforms of AI technologies are been 
approached for drug repurposing in the pharmaceutical 
industry for mixed data sources such as PREDICT [136], 
Netlap RLS [137], DTINet [138]. Most of the studies 
till date reported have employed learning algorithms to 
develop accurate predictions on the basis of creating a 
significant correlation between drugs, the targets and the 
disease. The heterogeneous data sources from the small 
molecules under the investigation, disease-dependent phe-
notypes and the biological pathways. However, the relative 
importance of each factor remains unclear [138].

To execute this approach, three distinct kernels are 
employed for different level of information. Starting from 
the kernel-based on a structure which gathers information 
regarding the analogy between the chemical configurations. 
The other kernel is based on the transcriptional information 
that gives the information of the gene expression based on 
the similarities that exists among the drugs and the kernel 
gives the information regarding the targets like the distance 
between the targets and the interaction between the proteins 
of the given targets. This data is further integrated and out-
put predictions are generated and come under as supervised 
learning. However, in certain cases where the data for high-
quality samples is not available certain unsupervised and 
semi-supervised learning algorithms are employed.

The unsupervised computational approach uses the 
already known predictors about the drug labels for training 
purposes. These are based on clustering algorithms [139]. 
This unsupervised algorithm and topographical pharmaco-
phore descriptor (CATS) are used for clustering algorithms. 
The prediction accuracy of unsupervised learning is how-
ever moderate. The semi-supervised learning paradigm is 
a substantial model for a small amount of labelling training 
sets and tremendous amounts of unlabelled data informa-
tion. One such example is LapRLS that generates algorithms 
for drug-target interactions knowing that FDA approval was 
based only on target predictors. However, the feature of 
simultaneous prediction sets a good score for this method. 
Other method includes BLM-NII, Net CBP, LPMIHN.

However, still, AI-based drug repurposing is in its initial 
stages of applicability. To ensure its diverse applicability in the 
field, the system must first overcome the prediction accuracy 
attained manually by the experts [54].

Role of AI in clinical pharmacology

The most integral part of the drug development process is the 
study of its clinical aspects. Any failure at this step is a great 
deal of impairment for the economy and time. So, any failure 
at the level of patient recruitment and inefficient monitoring 
system may lead to a skyrocketing loss. Therefore, to improve 
the scores of these trials, technologies based on AI and ML 
has been emerged with a vision of better and more accurate 
predictions at the level of designing the studies and up to the 
execution of trials [140].

IBM Watson is a system that utilises the electronically gen-
erated medical record of volunteers to generate a database for 
Clinical trial matching based on the eligibility criteria of the 
patients. This system enriches the enrolment criteria without 
complex protocols for the manual sorting and analysis of pro-
files for clinical findings. Some DL-based models measure the 
outcomes of the clinical trials at different phases. Probabilities 
of the side-effects and points of the pathway activation are 
used for training purposes to generate models that can accom-
plish prediction for the clinical trial outcomes [141]. Various 
ongoing innovations aim to create the virtual framework to 
mimic the data points regarding the physiological and patho-
logical build-up of the human system that can help design drug 
regimens, prognosis, diagnosis, and treatment criteria [142].

Clinical pharmacology can benefit in multiple ways from 
these advancing technologies. For instance, many web-based 
platforms make a point by generating interfaces for rational 
use of drugs and medical-based tools to help patients and 
all the web platform users for drug-related information. The 
major challenge in clinical pharmacology is the connectivity 
of different layers of the drug development process, which 
is operated at any single level but at different levels and 
with different people, making it difficult to gather struc-
tured information. Moreover, very few studies are known 
to incorporate large databases with multiple numbers of 
parameters. This makes the scope of AI and ML in clinical 
pharmacology more disrupt. However, the next-generation 
technologies seem to create a better navigation path for this 
field with the involvement of intelligent personal assistants 
[142] (Table 1).

Authors’ opinion and critical view

Mimicking of human intelligence using machine is known 
as AI and in current scenario use of AI in healthcare sys-
tem has gradually increased, including a broad range of 
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applicability in various fields of pharmacology. Now AI 
technologies are used at every stage of the drug develop-
ment process, which reduces the health risks associated 
with preclinical and clinical trials while also significantly 
lowering the cost. It has the potential to improve patient 
care, helps in diagnosis of various diseases, nurture profit-
able development, and improve outcomes. It can also be 
used to discover treatments for various neurodegenerative 
disorders  like Parkinson's and Alzheimer's disease. AI 
may track patient data more proficiently than traditional 
methods of care. Thus, offering doctors more time to con-
centrate on treatments. However, it has some limitations 
such as high cost and security breaches with regard to 
data privacy. Another major disadvantage of AI is that 
it can not compensate for the in-vivo study in preclini-
cal drug discovery process. In-vivo experiments are still 
required in drug development process to confirm the safety 
and efficacy of drugs.

Summary

AI has significant impact on pharmacology and drug discov-
ery process, providing numerous benefits such as accelerat-
ing the process, limiting time-consuming and costly proto-
cols, and making judicious use of available resources. The 
role of AI in pharmaceutical sciences encompass a wide 
range of scientific procedures associated with drug discovery 
and development such as use of analytical techniques such 
as X-ray, ECG, and histopathological imaging in diagnosis 
of various disorders. In drug development process AI is used 
to various stages of preclinical study and data collection. AI 
is also used for prediction of safety, efficacy and pharma-
cokinetics of drug molecule. Additionally, in pharmaceuti-
cal sciences AI is used for drug targeting study, combina-
tion study and manufacturing processes. The ML process 
mimic the behaviour learning of human and randomising 
the data to eliminate any anomalies or duplicates. Moreover, 
AI has grown in popularity as it is used in QSAR and virtual 
screening for prediction of virtual pharmacological activity 
of compound. The GAN technique has been also contributed 
to medicinal chemistry as molecular de novo design. So far, 
the AI approach has been successfully applied in LBVS for 
molecular docking and in-vivo, in-vitro screening of com-
pound. It is the first choice when the target compound's 3D 
structure is unavailable. It is predicated on the idea that if 
the structures are similar, the biological effects will be the 
same. Furthermore, AI and ML are being used to improve 
drug trial results. Its goal is to make long-term decisions 
about drug design, chemical synthesis, and biological test.

Conclusion

This review has demonstrated the various functions of AI 
in pharmacological research and drug development. It will 
influence pharmacological researchers to promote newer 
innovative outcomes for the improvement of health care 
services. AI can reduce the risk of drug failure in clinical 
study by predicting the target and potency. It also reduces 
the economic burden by reducing the time and expenses of 
drug discovery method.
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Table 1  Various methods of artificial Intelligence and their applica-
tions

MRI magnetic resonance imaging; ECG electrocardiogram; NLP 
natural language processing; LSSVM least square support vector 
machine; PSOWNN particle swarm optimized wavelet neural net-
work; EPNN enhanced probabilistic neural network; CNN convolu-
tional neural networks; RDR referable diabetic retinopathy; GLCM 
grey level co-occurrence matrix; SVM support vector machines; RF 
random forest; ANN artificial neural network; GAN generative adver-
sarial network; QSAR quantitative structure–activity relationship; 
NMR nuclear magnetic resonance; DNN deep neural network; kNN 
K-nearest neighbouring; BP-NN backpropagation network; DNDD 
de novo drug design; ADMET absorption, distribution, metabolism, 
excretion, and toxicity; BBPs blood–brain barrier penetrating pep-
tides; ACPs anticancer peptides; VS virtual screen; GWAS genome-
wide association studies; CMap connectivity mat

S.No Methods Applications

1 MRI, X-ray, ECG Pharmaceutical sciences
2 NLP Medical diagnosis
3 LSSVM Medical diagnosis
4 PSOWNN Medical diagnosis
5 EPNN Medical diagnosis
6 CNN Medical diagnosis
7 GLCM Medical diagnosis
8 NN/XY-Fusion Medical diagnosis
9 QSAR and Drug discovery and development
10 GAN, DNDD Drug discovery and development
11 BBPs, ACPs Peptide-based drug discovery
12 X-ray, NMR Drug discovery and development
13 DNNs, ANNs, RFs, and 

SVMs, k-NN
ADMET

14 VigiGrade, VigiRank Adverse effect
15 CMap, GWAS Drug repurposing
16 LapRLS Drug repurposing
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